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Abstract

This paper envisions a future where autonomous agents are
used to foster and support pro-social behavior in a hybrid so-
ciety of humans and machines. Pro-social behavior occurs
when people and agents perform costly actions that benefit
others. Acts such as helping others voluntarily, donating to
charity, providing informations or sharing resources, are all
forms of pro-social behavior. We discuss two questions that
challenge a purely utilitarian view of human decision making
and contextualize its role in hybrid societies: i) What are the
conditions and mechanisms that lead societies of agents and
humans to be more pro-social? ii) How can we engineer au-
tonomous entities (agents and robots) that lead to more altru-
istic and cooperative behaviors in a hybrid society? We pro-
pose using social simulations, game theory, population dy-
namics, and studies with people in virtual or real environ-
ments (with robots) where both agents and humans interact.
This research will constitute the basis for establishing the
foundations for the new field of Pro-social Computing, aim-
ing at understanding, predicting and promoting pro-sociality
among humans, through artificial agents and multiagent sys-
tems.

Introduction

Everyday we are inundated with reports of situations that
challenge our belief in humanity. The aim of moving to-
wards more humane and fair societies appears to have been
forgotten, as anti-social behavior dominates the headlines.
According to analysts, journalists and even some politicians,
the world seems to be lacking empathy, compassion and car-
ing1. When famous and influential people exhibit clear signs
of not esteeming others, acting without conscience or guilt
over the unearned privileges they often enjoy, we should in-
deed be worried. They are our society’s role models. Simi-
lar concerns occur when established social norms (Nyborg
and others 2016) are unable to provide escape to Hardin’s
tragedy of the commons (Hardin 1968), resulting in undesir-
able situations such as antibiotic resistance, climate change,
or overexploitation of natural resources (Levin 2006; Ny-
borg and others 2016).

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.theguardian.com/science/2013/jan/04/barack-
obama-empathy-deficit

One can question if the advent of autonomous technol-
ogy is in itself contributing to the adverse situations that we
are witnessing. It is undeniable that the rise of technological
giants has promoted a society that is less equal, and more
divided (Stockhammer 2015). Perhaps the perception of au-
tonomy and intelligence in current systems is also a factor
leading to a decrease in our sense of responsibility towards
others and thus, make us, humans, less humane. It is hard
to know what role increasingly autonomous technology will
play in this new society. However, since we are on the brink
of an ”autonomy” revolution (the named fourth industrial
revolution), with autonomous cars already in our streets and
drones at our doorsteps, we must address these questions.
Social psychology and behavioral economics have been re-
searching how constructs, such as altruism or empathy, af-
fect decision-making and cooperation. Findings in these ar-
eas have rarely been taken into consideration by computer
scientists, engineers and technology developers in general.
In fact, the dominant view of human decision making is
based on the homo economicus principle of utility maxi-
mization, and this is already the backbone of several ap-
proaches to model behavior in autonomous machines.

Despite the negative examples and the predictions of
mainstream economic models, humans often act in ways
that benefit others: people behave pro-socially when giv-
ing money to charity, donating blood, sharing food, offering
one’s seat in the bus, helping a co-worker with some prob-
lem or informing an outsider about the direction to a city
location. Beyond small gestures, cooperation is the build-
ing block of complex social behavior and it underlies the
evolutionary origins of human societies. It is thereby funda-
mental to understand – and engineer – the contexts that pre-
vent selfishness and conflict, while allowing pro-sociality to
be sustained (or induced, when absent). It is not by chance
that the evolution of cooperation has been identified by Sci-
ence’s invited panel of scientists as one the major scientific
challenges of our century (Pennisi 2005).

In this context, we would like to ask how autonomous
agents can be used to nurture or nudge (Thaler and Sun-
stein 2008) cooperation and pro-sociality in a society of hu-
mans and machines. How can we design autonomous agents
which, immersed within humans, can promote collective ac-
tion in situations where it may not naturally arise? How can
we foster cooperation in organizations, help people to ad-



dress cyber-bullying when they witness it, combat the by-
stander problem, make people engaged in social good, pro-
mote sustainable habits, fight climate change, and so on?
Can autonomous systems play a role there? To address these
problems, several mechanisms have been identified as sup-
portive of cooperation, in situation ranging from two-person
dilemmas to large-scale collective action problems (Ostrom
2015; Nowak 2006; Rand and Nowak 2013).

Here we defend a complementarity between such mech-
anisms and autonomous machines in order to improve pro-
social behaviour within human groups. This approach is par-
ticularly relevant in cooperation problems involving large
populations, especially in situations where a minority of
carefully engineered artificial agents may produce a regime
shift towards pro-social behaviors. In fact, the introduction
of artificial agents may offer the means to overcome large-
scale coordination barriers (Santos and Pacheco 2011) and
tipping points (Scheffer 2009) towards a more pro-social
environment. Similarly, it may create novel tipping points,
initially absent from human social dynamics. This can be
achieved by designing autonomous agents that could influ-
ence others to behave in a certain way, by increasing the vis-
ibility of actions, advertising reputations or collective risks,
indirectly enforcing pre-defined social norms, introducing
previously absent behaviors, or simply creating empathic re-
lations with humans – among many other possibilities.

The recent interest in AI applications for the good of so-
ciety is not new, and there has been a surge of new devel-
opments and events over the past few years. Competitions
or workshops, like the AAAI’17 WS on ”AI and Operations
Research for Social Good”, whose purpose is to explore and
promote the application of artificial intelligence for social
good, are among many examples that we can find nowadays.
In fact, the United Nations2 together with the XPRIZE Foun-
dation organized the AI for Good Global Summit in Geneva
in 2017. Among other topics, these events address techni-
cal AI approaches for creating more sustainable cities, deal
with disaster response, address the impact of inequality, or
improve public health. The work here proposed goes in that
direction, having the potential to cause impact in some of
these application areas.

This paper, therefore, proposes a vision where au-
tonomous systems pro-actively act, foster and promote pro-
sociality, instead of passively allowing or supporting the del-
egation of responsibility into the technology. We believe that
this new type of computing will be linked with aspects of
transparency, accountability and participation, which are all
timely and urgently needed in our society.

To begin with, we define Pro-social Computing as ”com-
puting directed at supporting and promoting actions that
benefit the society and others at the cost of one’s own”. This
is a broad notion that may encompass different alternative
views of how to engineer pro-social computing. To make it
more concrete, we will start by proposing simple scenarios
where pro-social computing can be used. Then we will give
a glimpse of research agenda for engineering pro-social au-

2See http://www.itu.int/en/ITU-T/AI/Pages/201706-
default.aspx

tonomous agents and discuss the future of this area.

Application Cases

Just to place this area into perspective, let us illustrate three
simple situations where pro-social computing and, more
specifically, pro-social agents, may play a role in changing
the prevailing non-cooperative social dynamics, in a hybrid
society of humans and robots.

Fighting the bystander effect

The well-known case of Kitty Genovese’s murder more than
five decades ago is without a doubt the most publicized case
of the infamous ”bystander effect”. In this horrific case, sev-
eral witnesses were ”caught, fascinated, distressed, unwill-
ing to help but unwilling to turn away” (Darley and Latane
1968), while Kitty was attacked. Witnesses did not inter-
vene, and Kitty Genovese was brutally murdered. The term
bystander effect was actually coined after this event. In spite
of controversies surrounding the role of the bystanders in
that particular situation, many studies have been conducted
over the years, where the bystander effect is repeatedly ob-
served. This effect verifies that, as the number of people
witnessing a distressing event increases, their willingness
to help decreases (thus reducing pro-social behavior). In
computer-mediated scenarios (e.g., social media) we can
also observe the bystander effect, as it was shown that the
amount of time for an intervention increases with number
of people witnessing the situation (the virtual bystanders).
In fact, the growth of cyber-bullying in social media can be
clearly related to the bystander effect.

Why do people witness, condemn, and yet do not help?
According to the theory proposed by Darley and Latane,
three processes may occur before there is an action by the
bystander to aid the victim:

• 1) Audience inhibition, that is, individuals may not act
as the risk of embarrassment arises if others are watching
and it turns out that the situation did not require any help;

• 2) Social influence, whereby inaction becomes the estab-
lished behavior as individuals are observing others and
take their inaction as a guideline for their own behavior;

• 3) Diffusion of responsibility, that is, the costs of non-
intervention are shared in the presence of other people.
Finally, if there is partial observability and uncertainty

about what the others are doing, any bystander can even as-
sume that one of the observers is already acting and helping,
therefore disregarding the need to offer any assistance. From
a technological standpoint one can ask if this bystander ef-
fect may be addressed, and in particular if:
• Can autonomous machines and agents (particularly if they

are embodied in the physical world) be considered ”au-
dience” in this ”bystander” effect? That is, would these
autonomous machines increase the bystander effect?

• In particular, does the diffusion of responsibility also oc-
cur when, instead of humans, we have ”autonomous ma-
chines”?



• And social influence? Can machines/agents exhibit be-
haviors (either by acting or non acting) that influence
other’s (and humans’) behaviors?

• If agents can have social influence on humans, would they
be able to counter-act the bystander effect? If so, how can
we build technology for that?

Sustaining fairness and preventing inequality

Human decision-making is often driven by fair and equal-
itarian motives (Camerer 2003). Factors such as the cul-
tural setting (Oosterbeek, Sloof, and Van De Kuilen 2004),
engagement in large-scale institutions (Henrich and others
2010), or even the socio-economic class of the individuals
(Piff et al. 2010), provide clues regarding the propensity
to be fair. In fact, the influence of fairness is often strong
enough to overcome rationality and selfishness, which poses
important challenges to disciplines aiming to justify fair be-
havior (Thaler 1988). In this realm, the experiments with
the Ultimatum Game (UG) are particularly illuminating
(Güth, Schmittberger, and Schwarze 1982). In this interac-
tion paradigm, two agents interact with each other: the Pro-
poser is endowed with some resource and has to propose
a division with the Responder. If the Responder rejects the
proposal, none of the players earn anything. If the proposal
is accepted, they will divide the resource as it was proposed.
In the context of UG, only the egalitarian division, in which
both the Proposer and the Responder earn a similar reward,
is considered a fair result. Multiple studies attest that peo-
ple are fair when playing the UG (Camerer 2003). Inter-
estingly, seemingly irrational decisions rely on a complex
neural architecture: when facing unfair proposals by other
humans, the areas of the brain that get activated are those
associated with negative emotional states, such as anger and
disgust (Sanfey et al. 2003). Introducing machines and ar-
tificial agents in the game may thus result in different re-
sponses, as the attribution of causality shifts (Blount 1995).
Designing artificial agents that incorporate the mechanisms
responsible for the levels of fairness observed in human in-
teractions is non-trivial. Will humans infer causes and as-
sign responsibilities to artificial agents? Will artificial agents
blame humans (or other agents) for unfair behaviors? How
to escape the Computer Says No3 paradigm of unaccount-
able decision-making when being unfair, immortalized in
the British sketch show Little Britain?

Besides economic games, the relationship between AI,
fairness and equality has often been written with a negative
connotation. AI was associated with unemployment due to
the automation of low qualified job positions as well as with
a decrease in social mobility given the inability to re-train
individuals in order to positively engage in a hybrid human-
agent society.

Notwithstanding, and despite skepticism, we believe that
pro-social computing can bring the opportunity to engineer
fair systems, using the lessons from, e.g., psychology and
evolutionary biology. For example, just as noisy bots aid co-
ordination in populations of humans and agents (Shirado and
Christakis 2017), specific behaviors, hard-coded in selected

3https://en.wikipedia.org/wiki/Computer says no

agents, may potentiate the ensuing levels of fairness in a hy-
brid society (Santos et al. 2016).

In what concerns inequality and fairness, several technical
questions may be raised, regarding the challenges posed by
a human-agent society. In particular:

• Can autonomous machines and agents undermine (or
strengthen) the social and cultural ties existing in a society
and deplete (or increase) the ensuing levels of fairness?

• Will ”autonomous machines” lack human causal attribu-
tion, leading them to be excused from unfair behaviors?

• Will machines be able to engage in sanctioning and/or
reciprocal arrangements, often pointed as sustaining fair-
ness in human societies?

Promoting cooperation in complex multiagent

systems

The problems discussed above may be seen as part of the
broader discipline of cooperation studies (Sigmund 2010;
Genesereth, Ginsberg, and Rosenschein 1986). Cooperation
is one of the major elements of human social behavior, act-
ing as the glue for the whole society. Essential institutions
such as welfare provision, national defense, public health
systems and courts depend on the willingness of citizens to
contribute to a public good, i.e., to cooperate. Without our
capacity to cooperate, we would not survive as a species.
And yet, altruistic cooperation involves a cost to provide
a benefit to others, challenging evolutionary and economic
theories.

The dynamics of cooperation can be conveniently de-
scribed as a complex adaptive system (Miller and Page
2009; Levin 2006), where macroscopic cooperative pat-
terns emerge from the complex interplay of decisions, peer-
influence and social norms adopted at the microscopic level.
In this context, experimental economics combined with mul-
tiagent simulations grounded on game theory – and its
population-based counterpart, evolutionary game theory –
provide a powerful approach to model and understand the
complex ecology of choices that characterizes this type of
problems. This combination of tools has successfully identi-
fied key mechanisms associated with the emergence of coop-
eration, from kin and reciprocity mechanisms (Nowak 2006;
Rand and Nowak 2013), to the positive impact of social
norms (Axelrod 1986; Fehr and Fischbacher 2004; Nyborg
and others 2016; Ohtsuki and Iwasa 2004; Santos, Santos,
and Pacheco 2016), networks of interaction (Santos, Santos,
and Pacheco 2008), signaling (Skyrms 2010), among others.

Cooperation among humans has further peculiarities: a
meta-analysis performed on more than 100 experiments in-
volving over 5,000 subjects found that, in general, opportu-
nities for human-human communication significantly raised
cooperation rates (Sally 1995). The idiosyncrasies of hu-
man deliberation process also impact the observed levels
of cooperation. When people make rapid and intuitive deci-
sions in a collaborative scenario, there is more cooperation
than when people make their decisions after a time for de-
liberation and reflection (Rand, Greene, and Nowak 2012;
Bear and Rand 2016; Jagau and van Veelen 2017); the ten-



dency to be pro-social is intuitive, and subjects who reach
their decisions more quickly are more cooperative.

There is therefore an opportunity to employ this knowl-
edge about human cooperation dynamics in the design of
human-agent systems in which cooperation emerges and
is sustained over time. To do this, it is important to iden-
tify the environmental conditions that, combined with the
presence of artificial ”influential agents”, would provide a
paradigm shift in situations in which purely selfish behav-
iors are the expected outcomes. These conditions are natu-
rally dynamic, as dilemmas change in time and/or depend on
the frequency of behaviors in the population (Sigmund 2010;
Stone and Veloso 2000).

Moreover, evidence shows that pro-social computing will
be confronted with similar tools that aim at supporting the
interests of just a few, instead of benefiting the society as
a whole (think about twitter bots spreading misinforma-
tion). In this context, the use of frequency-dependent models
may provide important clues on how to successively adapt
and prevail in a complex ecology of competing strategies –
pro-social and selfishly designed agents – stemming a Red
Queen dynamics (Van Valen 1973) that is common to a wide
range of self-organized systems.

Being able to do this successfully would provide ad-
vances in several domains. Overexploitation of natural re-
sources, voluntary vaccination, climate agreements and city
planning, overuses and resistance to antibiotics, are just a
few examples of the most important collective challenges in
which, today, humans often act in their self-interest. More-
over, the ubiquitous nature of these problems (Levin 2006;
Santos and Pacheco 2011; Tavoni and Levin 2014; Nyborg
and others 2016) will turn any new principle discovered in
these topics into a valuable contribution to a wide range
of areas and applications addressing the interplay between
technological, social and ecological systems. Again, this is a
challenge for the area of pro-social computing, which should
aim at understanding, predicting, and influencing human be-
havior. Several questions lie ahead, for instance:
• Can human-agent cooperation rely on the same mecha-

nism (e.g., reciprocity, social norms, signaling, networks)
that sustain cooperation in human societies?

• Can ”influential agents” be used to elicit cooperation in
scenarios where defection is today observed, providing a
paradigm shift in situations in which purely selfish behav-
iors are the expected outcomes?

• How can the particularities of human (dual-process) de-
liberation and human communication be used to design
artificial agents that both cooperate and elicit cooperation
from humans and/or other agents?

Engineering pro-sociality: a research agenda

The application cases here presented provide a first glimpse
of what problems pro-social computing can address. Re-
search in pro-social computing involves many different ar-
eas, including not only AI, but also economics, sociology,
psychology, human-agent interaction, information sciences
and evolutionary biology. In fact, pro-social computing must
carefully take into account the genetic and social pathways

of pro-sociality. On one way, scientists like Frans de Waal
take a positive stance and, based on large studies with some
of our most closest primate relatives, provide evidence on
the biological origin of kindness, compassion, cooperation
and helping behaviors, which seem to underlie our most in-
nate actions (De Waal 1996). On the other hand, one should
regard pro-sociality as a social construct, often nurtured
by intergenerational education processes (Dixit and Levin
2017). Studying and engineering pro-sociality is thus a mul-
tidisciplinary endeavor that must be addressed at different
scales: We will need to study the effects at the macro society
level but also at the micro individual level.

From a methodological point of view, for the area of pro-
social computing to develop, we propose research in the fol-
lowing sub-areas:
• Understanding the emergence of pro-social behavior in

populations using large-scale simulation of multiagent
systems;

• Performing Experimental Studies with Humans and
agents using social dilemmas to understand the conditions
and situations where pro-social behaviors emerge;

• Engineering specific (even perhaps pathological) behav-
iors in the initial scenarios for social simulation to study
the effects on populations;

• Performing studies with humans and Virtual Agents in
Virtual Worlds. Agents can be built as pro-social (given
the previous results), triggering pro-social behavior.

• Engineering Social Robots as pro-social agents in order
to test the them in natural physical spaces, where humans
and agents co-exist.

Engineering agents in a hybrid social environment (where
both humans and agents co-exist) will involve not only pro-
social agents in their behavior, but also agents that reason
about the pro-sociality level of others, how that can be in-
fluenced, and how to act accordingly. It is known, from sev-
eral studies on ”social control”, that the presence of others
influences people’s deviant behaviors. A disapproval look
may suffice to prevent anti-social actions (Bateson, Nettle,
and Roberts 2006). Similarly, the artificial look of a robot
may elicit altruism (Burnham and Hare 2007). These nu-
ances will become fundamental once we start combining
humans and agents in pro-social computing. As such, to en-
gineer pro-sociality, we will need to address a set of other
cognitive capabilities, and in particular Empathy, Morality
and Theory of Mind. Empathy has been largely used by the
media as a persuasive tool to make people imagine them-
selves in the place of a suffering other and to motivate help
(Coke, Batson, and McDavis 1978). In fact, we see empathy
as essential to foster pro-social actions and, as such, empa-
thy will need to be synthesized in agents (Paiva et al. 2004;
2017) as well as modeled as a heuristic to understand oth-
ers – potentially in group interaction (Santos et al. 2015).
Morality, that is, the capability to act following a given code
of conduct, should also play a central role in pro-social com-
puting. Agents should have the capacity to distinguish be-
tween good and bad behaviors in specific contexts, must be
considered both during their own decision-making process



and when judging the actions of surrounding agents. Finally,
Theory of Mind can be used to create models of the internal
state of other agents and humans and reason about them. All
these capabilities will constitute the building blocks of the
agents that will allow them to determine the desirability of
an event for others and the society, as well as their subjective
individual appraisals (Dias, Mascarenhas, and Paiva 2014).

We believe Pro-social computing to be a promising new
area that will support positively the role of AI in the de-
cisions made by future societies. For centuries, the investi-
gation into human nature has tried to answer whether hu-
mans are either fundamentally good or fundamentally bad.
Luckily, despite human nature being guided mostly by self-
serving motivations, it is also known that we help each other
at our own cost. Our AI systems should also do that, and take
advantage of this characteristic of human nature to promote
pro-sociality in general.
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